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Vapor flow in the condenser of a cylindrical gas-regulated heat pipe is considered 
in a broad range of Reynolds numbers with uniform suction at the wall. 

At present, in calculating gas-regulated heat pipes (GRHP), the boundary of the vapor-- 
gas front (VGF) is often regarded as plane. On the basis of experimental data and visual 
observations, it was shown in [i, 2] that this is not always so. Often the front is para- 
bolic. In connection with this, there arises the question of mathematical description of 
the flow in GRHP and, in particular, in the VGF region. 

The hydrodynamics of vapor flow in ordinary non-gas-regulated heat pipes has been in- 
vestigated in numerous works [3-9]. In GRHP, the presence of uncondensed gas leads to the 
existence of a zone of hydrodynamic interaction between the vapor and the gas, which influences 
the velocity field and the pressure distribution over the heat pipe. 

The present investigation is prompted by the lack of consistent theoretical and experi- 
mental data on the hydrodynamics of vapor flow in a GRHP condenser, especially in the VGF re- 
gion. This problem is divided into two stages: i) determining the velocity profile and 
hydrodynamics of the vapor flow in the active region of the condenser; 2) finding the VGF 
dimensions by using the velocity profiles obtained in the first stage of solving the problem. 

The flow in the active region of the condenser is described using the equations of 
motion in cylindrical coordinates : 
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and the mass conservation equation: 
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Eliminating the pressure from Eqs. (i) and (2) and switching to dimensionless variables 
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it is found that 
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The current function ~ is now introduced: 
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The solution of Eq. (5) is sought in polynomial form: 
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satisfying the boundary conditions 

1) ~=Bwhen X=0;  Y = I ;  2) '#=0 when X =  l; Y = I ;  3) V=0 whenY=0; 

4) U----0 whenY=l;  5) V = B  whcnY=l;  6) ~ = 0  when Y--0. 
OY 
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Taking account of Eq. (7), the following expressions are obtained for the axial and 
radial components of the velocity: 
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In Eqs. (i0) and (ii), the coefficients A~ and A3 are unknown. They are found by trans~ 
forming differential equation (5) taking account of Eqs. (9)-(11) for 4, U, and V. As a 
result, an ordinary algebraic equation is obtained: 
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where 
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Using the Galerkin method [i0], the unknown coefficients AI and A: are found from the 
sys t em of  e q u a t i o n s  

1 1 ! ! 
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where % = XY~(I--Y~)Z and ~2 =X3YS(I--Y2) 2 are functions with the coefficients AI and A3 
in Eq. (8). 

Solving Eq. (13) with fixed values of the geometric parameter B and the radial Reynolds 
number (Rer), the coefficients AI and A3 are obtained; knowing these, the profiles of the 
velocities U and V may be obtained from Eqs. (i0) and (ii). 
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Fig. i. Theoretical axial-velocity profiles with 
Rer = 1 (I), 2 (2), 3 (3), and 4 (4) in different 
cross sections of the condenser: a) X = X,; b) X = 
= 0.95; c) X = 1.0. 
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Fig. 2. Coordinates of onset of return flow with 
different Rer: I) calculation of [9]; 2) present 
calculation; 3) calculation of [Ii]; 4) experimen- 
tal data of [9]. 

In the first approximation, the velocity profiles and pressure differences in the 
active region of the condenser are calculated with an accuracy allowing for the one unknown 
coefficient Az, which is calculated from the equation 
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obtained from the first relation in Eq. (13) with Aa = 0. 

The axial-velocity profiles with Re r = 1-4 in different condenser cross sections are 
shown in Fig. i. As is evident from Fig. i, there is return flow at the end of the active 
region of the condenser. The extent of the return-flow region here increases as the Reynolds 
number increases. For example, when Rer = i, the coordinate of onset of return flow X, = 
0.948, and when Rer = 4, X, = 0.77. This is clearly evident in Fig. 2. In the first approxi- 
mation (Aa = 0), the coordinates X, are found from the condition that the tangential stress 
at the wall vanishes, i.e., 3U/BY = 0, and differentiation of Eq. (i0) at the wall (Y = I) 
leads to the expression X, = B/[B + At(B, Rer)]. The results of this calculation are in good 
agreement with the experimental results of [9]. 

Knowing the velocity profiles in the return-flow region in the GRHP, the VGF dimensions 
AX may be approximately determined (Fig. 3). These dimensions are determined by extrapolating 
points of inflection of the velocity in the VGF region. As is evident from Fig. 3, AX is 
larger at large Rer. The VGR region is approximated by an ordinary quadratic parabola in the 
solution. 

The component of the pressure gradient along the heat pipe is determined from Eq. (I). 
After transformation, it is found that 

o x  Re, Y oY ~ - u o ~  0--7- (15) 
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Fig. 4. Variation in dimensionless pressure 
on the active region of the heat-pipe con- 
densation zone: i) calculation on the basis 
of velocity similarity over the length of the 
pipe; 2) present solution; 3) calculation of 
[9]; 4) experimental data of [9]. 

Integrating Eq. (15) over the whole active region of the condenser gives a relation for 
the variation in axial pressure at the axis (Y = 0): 

AP~ ---- 7.2B z 1 Rerl ) 14.4 A1BRe~ 1.8A~; (16) 

at the wall (Y = i): 

AP~ = 3.6BZ(1 2 
Rer 

4 
Rer ). (17) 

The pressure differences in the active region of the GRHP condenser may be calculated from 
these relations. The results of calculating the variation in dimensionless pressure on the 
section from XI = 0.05 to X2 = 0.95 are shown in Fig. 4. As is evident from Fig. 4, the 
results are in good agreement with the experimental data of [9]. 

The theoretical relations proposed here allow the velocity profiles, pressure differences, 
and coordinates of onset of reverse flow to be sufficiently accurately determined over the 
whole active region of the condenser when Rer ~ 20 and allow the dimensions of the vapor-gas 
front to be estimated with different geometric dimensions and power inputs to the GRHP. 

Note also that in real GRHP, under the action of the return flows, smearing of the VGF 
will occur on account of the friction between vapor and gas, i.e., the problem is conjugate. 
Mathematical description of this problem entails considerable difficulties. Experimental 
investigations are necessary to refine the VCF dimensions. Analysis of theoretical and 
experimental results offers the possibility of taking account of the nonlinearity and extent 
of the VGF in GRHP calculations and construction. 

NOTATION 

U, axial velocity component; U, dimensionless axial velocity component; Vo, suction rate 
at wall; V, radial velocity component; P, static pressure; P, dimensionless pressure; R, heat 
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pipe radius; L, length of active region of condenser~ Rer, radial Reynolds number; X, axial 
coordinate; Y, radial coordinate; Y, dimensionless radial coordinate; B, geometric parameter; 
p, density; ~, kinematic viscosity; 4, current function; V, dimensionless radial velocity 
component; X, dimensionaless axial coordinate. 
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THEORY OF AN ABSOLUTE SUPERCONDUCTING BOLOMETRIC 

THERMAL-RADIATION RECEIVER 

S. B. Kiselev UDC 535.6:621.317.794 

Taking the transient zone into account, a theory is developed and the operation is 
analyzed fora superconducting nonisothermal bolometer in the regime of absolute 
thermal-radiation reception. 

The main problem in producing an absolute thermal-radiation receiver (ATRR) is assurance 
of the equivalence of the electrical substitution power and the radiant thermal flux power 
absorbed by the ATRR sensor. One of the promising areas in the solution of this problem is 
the production of an ATRR based on a superconducting nonisothermal bolometer (SNB), first 
proposed by Franzen [i]. However, the theory worked out in [i] is developed for the two- 
phase state of the SNB, i.e., without taking account of the transient zone from the normal 
to the superconducting state, for the case when the incident thermal flux is distributed 
uniformly over the whole surface of the ANB sensor. This makes direct utilization of the 
SNB of known structures [2-4] difficult for the production of an ATRR because of the different 
nature of the thermal energy absorption and liberation by the bolometer sensor. In bhis 
paper a three-phase (taking account of the transient zone)theory is developed for the SNB, 
and computations are performed for the case when the incident thermal flux is distributed 
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